555-704i Riemann Integral Notes Spring 2007
نویسنده
چکیده
1. The Darboux definition of the Riemann Integral Let f : [a, b]→ R be a it bounded function. Definition 1.1. A partition P of [a, b] is collection of points {x0, · · · , xn} which satisfiy a = x0 < x1 < · · · < xn = b. Denote by ∆xk the length of the interval [xk−1, xk], i.e., ∆xk = xk−xk−1. Then the mesh |P| is by definition equal to max1≤k≤n∆xk. Given a bounded function f and a partition P of [a, b] we define the Riemann upper sum by
منابع مشابه
Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملMAT125B Lecture Notes
1 Riemann integration 2 1.1 Partitions and Riemann sums . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 A criterion for integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Upper and Lower Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 The refinement of a partition . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Properties of upper an...
متن کاملTheta and Riemann xi function representations from harmonic oscillator eigensolutions
From eigensolutions of the harmonic oscillator or Kepler-Coulomb Hamiltonian we extend the functional equation for the Riemann zeta function and develop integral representations for the Riemann xi function that is the completed classical zeta function. A key result provides a basis for generalizing the important Riemann-Siegel integral formula.
متن کاملMath 2400 Lecture Notes: Integration
1. The Fundamental Theorem of Calculus 1 2. Building the Definite Integral 5 2.1. Upper and Lower Sums 5 2.2. Darboux Integrability 7 2.3. Verification of the Axioms 10 2.4. An Inductive Proof of the Integrability of Continuous Functions 12 3. Further Results on Integration 13 3.1. The oscillation 13 3.2. Discontinuities of Darboux Integrable Functions 14 3.3. A supplement to the Fundamental Th...
متن کاملNotes on the Lebesgue Integral
In the definition of the Riemann integral of a function f(x), the x-axis is partitioned and the integral is defined in terms of limits of the Riemann sums ∑n−1 j=0 f(x ∗ j)∆j, where ∆j = xj+1− xj. The basic idea for the Lebesgue integral is to partition the y-axis, which contains the range of f , rather than the x-axis. This seems like a “dumb” idea at first. Shouldn’t the two ways end up givin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007